
Secure Namespaced Kernel Audit for Containers
Soo Yee Lim

University of British Columbia
Vancouver, British Columbia, Canada

sooyee@cs.ubc.ca

Bogdan Stelea
University of Bristol

Bristol, United Kingdom
bs17580@bristol.ac.uk

Xueyuan Han
Harvard University

Cambridge, Massachusetts, USA
hanx@g.harvard.edu

Thomas Pasquier
University of British Columbia

Vancouver, British Columbia, Canada
tfjmp@cs.ubc.ca

ABSTRACT

Despite the wide usage of container-based cloud comput-
ing, container auditing for security analysis relies mostly
on built-in host audit systems, which often lack the abil-
ity to capture high-fidelity container logs. State-of-the-art
reference-monitor-based audit techniques greatly improve
the quality of audit logs, but their system-wide architecture is
too costly to be adapted for individual containers. Moreover,
these techniques typically require extensive kernel modifica-
tions, making it difficult to deploy in practical settings.
In this paper, we present saBPF (secure audit BPF), an

extension of the eBPF framework capable of deploying secure
system-level audit mechanisms at the container granularity.
We demonstrate the practicality of saBPF in Kubernetes by
designing an audit framework, an intrusion detection system,
and a lightweight access control mechanism. We evaluate
saBPF and show that it is comparable in performance and
security guarantees to audit systems from the literature that
are implemented directly in the kernel.

CCS CONCEPTS

• Security and privacy → Operating systems security; In-
trusion detection systems; • Networks → Cloud computing.

KEYWORDS

eBPF, auditing, container, provenance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SoCC ’21, November 1–4, 2021, Seattle, WA, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8638-8/21/11. . . $15.00
https://doi.org/10.1145/3472883.3486976

ACM Reference Format:

Soo Yee Lim, Bogdan Stelea, Xueyuan Han, and Thomas Pasquier.
2021. Secure Namespaced Kernel Audit for Containers. In Proceed-
ings of ACM Symposium on Cloud Computing (SoCC ’21). ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3472883.3486976

1 INTRODUCTION

In recent years, container-based cloud computing has gained
much traction. As a lightweight alternative to VM-based com-
puting infrastructure, it provides an attractive multi-tenant
environment that supports the development of microservice
architecture, where a monolithic application is organized
into a number of loosely-decoupled services for modularity,
scalability, and fault-tolerance [59].

Container security becomes a major concern as the popu-
larity of container-based cloud continues to grow rapidly [64].
For example, by sharing individual microservices across ap-
plications, the container ecosystem, as promoted by widely-
used container management and orchestration platforms,
such as Docker and Kubernetes, inadvertently spreads vul-
nerabilities that canwiden an application’s attack surface [63].
Vulnerabilities in individual containers can facilitate the con-
struction of a cyber kill-chain, in which the attackers perform
various attacks in steps on different microservices to achieve
their ultimate goal [37]. Information leakage between a host
and a container and between two co-resident containers has
also been demonstrated to be possible [25].
Like in traditional security analysis, system-layer audit

logs are often considered to be an important information
source for addressing many container security concerns [29,
31, 44]. For example, to identify a misbehaving container
from a cluster of replicated microservices, kernel audit logs
have been used to define process activity patterns and de-
scribe unusual activity that does not fit into any observed
pattern [32]. Container-focused security systems typically
use existing host audit tools, such as the Linux Audit Frame-
work, to log system events, but research has shown that
these audit systems are insufficient to capture complete sys-
tem activity necessary for security analysis [26]. Alternative

https://doi.org/10.1145/3472883.3486976
https://doi.org/10.1145/3472883.3486976

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Lim et al.

reference-monitor-based approaches [51, 54] provide a more
complete picture by leveraging in-kernel monitoring hooks,
but they are not designedwith container-based computing ar-
chitecture in mind. Specifically, reference-monitor-based ap-
proaches require extensive host kernel modification and per-
mit only host-wide policy specification. The former require-
ment is often forbidden by cloud infrastructure providers,
and the latter makes it difficult to satisfy the audit needs of
individual containers sharing the same host.

We present saBPF, a lightweight, secure kernel audit sys-
tem for containers. saBPF enables each container to cus-
tomize its auditing mechanism and policy, even if containers
specifying different policies and mechanisms are co-located
on the same host. Audit data captured by saBPF is guaranteed
to have high fidelity, meaning that the data faithfully records
complete container-triggered system activity [54], free of
concurrency vulnerabilities [66] and missing records [26]
that are commonly present in existing audit tools. As such,
saBPF builds a solid foundation for future forensic applica-
tions in a containerized cloud environment. For example, to
deploy a cyber kill-chain detection system for a network of
Kubernetes containers (or pods), we can follow the Sidecar
design pattern, in which saBPF is configured for each pod
based on the characteristics of the microservice it provides.
A specialized sidecar container is attached to capture and
analyze audit logs. Sidecar containers from different pods
can ship any suspicious events to a remote system where
alert correlation is performed to detect the presence of a
kill-chain [45]. We discuss this use case in more detail in § 4.

saBPF is implemented as an extension of eBPF. Specifically,
we make the following contributions:

• We expand Linux’s eBPF framework to support the
attachment of eBPF programs at the intersection of
the reference monitor and namespaces, which allows
fully-configurable, high-fidelity, system-level auditing
for individual containers (see § 3);

• We develop functional proof-of-concept applications
using saBPF to demonstrate its practicality (see § 4);

• We conduct thorough performance analysis to under-
stand the cost and benefits of using saBPF for secure
audit; we show that our approach outperforms existing
audit solutions of similar caliber (see § 5 and § 6);

• We open source saBPF to facilitate the development of
security applications for containers in the cloud (see
Appendix A).

2 BACKGROUND

saBPF is built upon the extended Berkeley Packet Filter (eBPF)
framework, a Linux subsystem that allows user-defined pro-
grams to safely run inside the kernel [8]. To provide high-
fidelity system audit data, saBPF implements eBPF programs

Figure 1: eBPF workflow.

that instrument in-kernel hooks defined by the Linux Secu-
rity Modules (LSM) framework, which is the reference moni-
tor implementation for Linux [46]. saBPF further leverages
namespaces to ensure that auditing can be customized for
individual containers. We provide some background knowl-
edge for each component.

2.1 Extended Berkeley Packet Filter

eBPF is a Linux built-in framework that allows customized
extensions to the kernel without modifying the kernel’s core
trusted codebase. We illustrate how eBPF works in Fig. 1.
Developers can write an eBPF program in C and compile
the program into eBPF bytecode using Clang. The kernel
uses a verifier to statically analyze the bytecode, minimiz-
ing security and stability risks of running untrusted kernel
extensions [28]. After verification, a just-in-time (JIT) com-
piler dynamically translates the bytecode into efficient native
machine code. The translated eBPF program is attached to
designated kernel locations (e.g., LSM hooks in our case) and
executed at runtime. eBPF programs can share data with
user-space applications using special data structures such as
eBPF maps and ring buffers [3].

eBPF is frequently used as the underlying framework for
network security and performancemonitoring. In a container
environment, for example, eBPF enables Cilium [5], a popular
networkmonitoring tool for platforms such as Kubernetes, to
secure application-level protocols with fine-grained firewall
policies.

2.2 Linux Security Modules

LSM consists of a set of in-kernel hooks that are strategi-
cally placed where kernel objects (such as processes, files,
and sockets) are being accessed, created, or destroyed. LSM
hooks can be instrumented to enable diverse security func-
tionality, with the canonical usage being the implementation

Secure Namespaced Kernel Audit for Containers SoCC ’21, November 1–4, 2021, Seattle, WA, USA

Figure 2: LSM hook architecture [46]. The green blocks

are specific to saBPF, which is described in § 3. 1○ shows

programs attached to the root cgroup; 2○ shows two

programs attached to the child1 and child2 cgroup

respectively.

ofmandatory access control scheme [56]. As a referencemon-
itor, LSM has also been adapted to perform secure kernel log-
ging, which provides stronger completeness and faithfulness
guarantees than traditional audit systems [17, 51, 54]. For
example, prior research has verified that LSM hooks capture
all meaningful interactions between kernel objects [22, 36]
and that information flow within the kernel can be observed
by at least one LSM hook [27], which is necessary to achieve
completeness.
The LSM framework does not use system call interposi-

tion as older systems did. Syscall interposition is susceptible
to concurrency vulnerabilities, which in turn lead to time-
of-check-to-time-of-use (TOCTTOU) attacks that result in
discrepancies between the events as seen by the security
mechanism and the system call logic [66, 67]. This is why
solutions such as kprobe-BPF, while useful for performance
analysis, are not appropriate to build security tools. Instead,
LSM’s reference-monitor design ensures that the relevant
kernel states and objects are immutable when a hook is
triggered, which is necessary to achieve faithfulness. LSM-
BPF [57] is a recent extension to the eBPF framework that
provides a more secure mechanism to implement security
functionalities on LSM hooks.

2.3 Namespaces in Linux

A namespace in the Linux kernel is an abstract environment
in which processes within the namespace appear to own an
independent instance of system resources. Changes to those

Name Description

cgroup Allocate system resource (e.g., CPU, memory,
and networking)

ipc Isolate inter-process communications
network Virtualize the network stack
mount Control mount points
process Provide independent process IDs
user Provide independent user IDs and group IDs,

and give privileges (or capabilities) associated
with those IDs within other namespaces

UTS Change host and domain names
Time See different system times

Table 1: Summary of Linux namespaces.

resources are not visible to processes outside the namespace.
We summarize available namespaces in Linux in Table 1.

One prominent use of namespaces is to create contain-
ers. For example, an application in a Docker container runs
within its own set of namespaces. Kubernetes “pods” contain
one or more containers so that they share namespaces (and
therefore system resources). Kubernetes makes it appear to
applications within a pod that they own a machine of their
own (Fig. 3).
saBPF modifies the kernel to enable per-container audit-

ing, selectively invoking eBPF programs on LSM hooks based
on cgroup membership (§ 3.1). cgroup isolates processes’
resource usage in a hierarchical fashion, with a child group
having additional restrictions to those of its parent. Since
cgroup v2 [35], this hierarchy is system-wide, and all pro-
cesses initially belong to the root cgroup. In a Kubernetes
pod, for example, containers can be organized in a hierarchi-
cal structure and assigned various cgroup namespaces to set
up further restrictions. Certain types of eBPF programs, such
as the ones that are socket-related, can already be attached
to cgroups (e.g., BPF_PROG_TYPE_CGROUP_SKB). This allows,
for example, a packet filtering program to apply network
filters to sockets of all processes within a particular con-
tainer. saBPF makes it possible to attach eBPF programs at
the intersection of cgroups and LSM hooks (§ 3.1) for audit
purpose and beyond (§ 4).

3 SABPF: EXTENDING THE EBPF

FRAMEWORK

saBPF extends the eBPF framework to support secure ker-
nel auditing in a containerized environment. Our design
is minimally invasive, reusing existing components in the
framework as much as possible and extending only what
we deemed to be necessary. This is a conscious decision
made to achieve two objectives: 1) by adhering closely to the

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Lim et al.

Figure 3: Namespaces in Kubernetes.

design philosophy of the eBPF framework, we ensure that
saBPF can be readily integrated into the mainline kernel; 2)
since saBPF is built upon the eBPF framework and adheres
to its design philosophy, users already familiar with eBPF
can quickly develop new applications using saBPF, while
new users have access to eBPF’s documentations and forums,
which makes saBPF easy to learn and use. In addition, any
existing eBPF program can run in conjunction with our au-
dit solution on the saBPF-enhanced platform for individual
containers.

3.1 Namespacing LSM-BPF

saBPF extends the use of cgroup (which in eBPF is used
mostly for network filtering) to LSM hooks. This extension
allows saBPF to precisely control audit granularity. Recall
that cgroups are arranged in a global hierarchy since cgroup
v2, and all processes belong to the root cgroup by default.
A Kubernetes pod, for example, defines a pod-level cgroup,
which is the ancestor of container-level cgroups withinwhich
individual containers in the pod reside (Fig. 3). By attach-
ing eBPF programs to container-level cgroups, saBPF can
perform container-level auditing; at the same time, saBPF
can monitor activity inside the entire pod by attaching au-
dit programs to the pod’s root cgroup. While the design of
Kubernetes makes it natural to follow this two-level audit
scheme using cgroup, saBPF can support arbitrarily complex
cgroup hierarchy for customizable use.
Listing 1 illustrates how an saBPF program is defined by

developers. It is a program that simply prints “Hello World!”
when the file_open LSM hook is triggered. The statement
in line 1 specifies where the program should be attached, and
the ctx variable in line 2 contains the parameters passed from
the file_open hook. The user attaches (and detaches) this
program to (and from) a cgroup through the bpf() system
call. Multiple eBPF programs can be attached to the same
cgroup-hook pair by setting the BPF_F_ALLOW_MULTI flag;
they will be executed in FIFO order.

1 SEC (" cgroup_lsm / f i l e _ o p e n ")
2 in t c g r oup_ f i l e _ op en (s t ruc t bp f_cg roup_ l sm_c tx ∗

c t x)
3 {
4 b p f _ t r a c e _ p r i n t k (" He l l o World ! \ n ") ;
5 return 0 ;
6 }

Listing 1: A “Hello World!” saBPF program that can be

triggered on the file_open hook.

In the kernel, when an LSM hook is triggered, saBPF in-
vokes appropriate eBPF programs through a customized se-
curity module. This module performs three main actions
for every hook. First, it prepares the parameters, which are
passed from the hooks to the eBPF programs. It then re-
trieves the cgroup associated with the current task. Finally,
it traverses the cgroup hierarchy (§ 2.3) backwards from the
current cgroup to the root cgroup and executes all programs
associated with the LSM hook.
Fig. 2 illustrates this process using the open system call

as an example. The root cgroup has two child cgroups,
child1 and child2. While the root cgroup has programs
attached to both inode_create and file_open LSM hooks,
child1 has only one program attached to file_open and
child2 has one program attached to a different LSM hook,
inode_setattr. As a result, any process that triggers the
file_open hook leads to the invocation of the programs
attached to that hook in the root cgroup. However, the pro-
grams attached to the same hook in child1 are only called if
a process belonging to child1 (or one of its decedents) trig-
gers the hook. Note that this process still causes programs
in the root cgroup to be called.
Early in the design phase, we considered creating a ded-

icated namespace for system auditing. While this allows a
clear separation of namespaces’ responsibilities, given that
cgroups are designed to control access to system resources,
we eventually abandoned this design for two reasons. First,
significant re-engineering of existing container solutions
would be required to make use of this new namespace. Sec-
ond, existing namespaced eBPF already uses cgroup. We
believe that introducing a new namespace goes against the
current design philosophy of eBPF. However, we emphasize
that based on our experience, it is relatively straightforward
to implement a new namespace should such a need arise in
the future.

3.2 Local Storages

System auditing often requires associating data with ker-
nel objects [54]. In early prototypes, we considered using

Secure Namespaced Kernel Audit for Containers SoCC ’21, November 1–4, 2021, Seattle, WA, USA

0 0.5 1 1.5 2 2.5

local

map

0.4

1.72

Figure 4: Look-up time for the cred local storage and
the eBPF map in 𝜇s. Using local storage gives a 4x
speedup.

eBPF maps, which are key-value stores shared among multi-
ple eBPF programs across execution instances, but we aban-
doned the idea due to poormaintainability. Specifically, when
using eBPF maps, developers must create an entry for each
new kernel object to store data associated with the object.
The key to the entry must be unique during the lifecycle
of the object. Ensuring uniqueness for all kernel objects is
important, but prone to error. For example, it is insufficient
to use just an inode number as the key for an inode object;
rather, a combination of the inode number and the file sys-
tem’s unique identifier is needed because inode numbers
are guaranteed to be unique per file system only. Moreover,
developers must also take special care to remove map entries
when objects reach the end of their lifecycle. This problem
is exacerbated by the fact that eBPF maps are created with
capacity limits.
saBPF uses a completely different approach to storing

such data, extending eBPF’s local storages, which are data
structures that are directly associated with kernel objects.
Local storages provide an interface similar to eBPF maps,
but they use the object reference as the key and store the
value locally with the kernel object. At the end of an ob-
ject’s lifecycle when the object no longer has any reference,
eBPF transparently removes the local storage associated with
the object. This takes the responsibility of removing unused
entries away from developers, making it less error-prone.
Furthermore, local storages incur less performance overhead
compared to eBPF maps, as shown in Fig. 4. At the time
of writing, eBPF provides local storages for only cgroup,
socket, inode and task. We implemented additional local
storages for file, cred, ipc, superblock, and msg_msg to
fully support LSM-based auditing. We give a practical illus-
tration in § 4.1.

3.3 Extension of eBPF interface

To access kernel data, eBPF programs rely on eBPF helpers,
which are an allowlist of kernel functions permitted by the
eBPF verifier to interact with the kernel. saBPF defines a
number of extra eBPF helpers, as shown in Table 2, to facili-
tate system auditing.

Name Description

bpf_inode_from_sock Retrieve the inode associ-
ated with a socket

bpf_file_from_fown Retrieve the file associated
with a fown_struct

bpf_dentry_get Retrieve the dentry associ-
ated with an inode

bpf_dentry_put Release a dentry after use
bpf_[cred/msg/ipc/
file]_storage_get

Get a bpf_local_storage
from a cred/msg/ipc/file

bpf_[cred/msg/ipc/
file]_storage_delete

Delete a bpf_local_storage
from a cred/msg/ipc/file

Table 2: Summary of new eBPF helpers provided by

saBPF.

A subset of functions return the inode associated to an
object of a certain type (e.g., bpf_inode_from_sock returns
the inode of a socket object). This can be useful to understand
the interplay of system calls acting at different levels of
kernel abstraction.

bpf_dentry_get returns the directory entry of an inode,
which helps saBPF programs to retrieve the path associated
with the inode. A directory entry is protected by a refer-
ence counter when a program manipulates it. The reference
counter is increased when bpf_dentry_get is called and
must be decreased by calling bpf_dentry_put once the en-
try is no longer used. To ensure correctness, we also modified
the eBPF verifier to verify that every bpf_dentry_get has
a corresponding bpf_dentry_put being called on the same
code path.
The remaining helpers are used to manipulate local stor-

ages (§ 3.2). We extended eBPF map helpers so that userspace
programs can interact with those storages. In eBPF maps,
userspace programs can access a set of helpers via system
calls to e.g., update or lookup map entries. Our extension
provides similar support for local storages: programs can
manipulate data in the local storage of a particular kernel
object using appropriate userspace identifiers. For example,
assuming appropriate privileges, we can lookup, update, and
delete data in a cred1 object’s local storage via its PID.

4 USE CASES

A framework like saBPF is only useful if it is both practical
and performant. We discuss three meaningful use cases that
we have implemented to demonstrate the types of application
that saBPF can easily support, showcasing its practicality.
We evaluate saBPF’s performance in § 6.

1cred is the credential information associated with a process.

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Lim et al.

Figure 5: A simplified whole-system provenance sub-

graph.

4.1 Whole-system Provenance Capture

We describe our implementation of ProvBPF, a provenance
capture mechanism that we developed atop saBPF. Prove-
nance has gained much traction in the security community,
notably with applications designed to understand intrusions
in a computer system [33, 34, 44], prevent data exfiltra-
tion [17], and detect attacks [29–31, 42, 45, 65]. ProvBPF
captures provenance at the thread granularity, recording
information such as security context, namespace, and per-
formance metrics.
ABrief Provenance Introduction. Computing systems are
too often opaque: they accept inputs and generate outputs,
but the visibility of their inner workings is at best partial,
which poses many issues in fields ranging from algorith-
mic transparency to the detection of cybersecurity threats.
Unfortunately, traditional tracing mechanisms are inade-
quate in addressing these issues. Instead, whole-system prove-
nance [54], which describes system execution by represent-
ing information flowswithin and across systems as a directed
acyclic graph, shows promise. Provenance records subsume
information contained in a traditional trace, while causality
relationships between events can be inferred through graph
analysis.
Fig. 5 shows a simple provenance graph. In this graph,

two tasks (𝑇 and 𝑇 ′) are associated with their respective
memory (𝑀 and𝑀 ′). The subscripts (e.g.,𝑇1 and𝑇2) represent
different versions of the same kernel object to guarantee
graph acyclicity [48]. 𝑇 creates a pipe 𝑃 and forks a new
process (corresponding to 𝑇 ′ and𝑀 ′). 𝑇 ′ reads information
from a file 𝐹 and writes information to 𝑃 . 𝑇 then reads from
this pipe. A versioned node is created every time an object
receives external information (e.g., when a task reads from
a file). This is a small subgraph representing a very simple
scenario. In practice, for example, a graph representing the

Figure 6: ProvBPF overview.

compilation of the Linux kernel would contain approximately
a few million graph elements [47].

The rest of our discussion focuses primarily on the novel
aspects of ProvBPF and the design choices we made as the
result of using saBPF to capture OS-level provenance (in-
stead of modifying the kernel). We compare ProvBPF’s per-
formance to that of a state-of-the-art provenance capture
system, CamFlow [51], in § 6.
Overview. Fig. 6 illustrates the architecture of ProvBPF
using the open system call as an example. In ProvBPF, eBPF
programs are executed on LSM hook invocations. ProvBPF’s
eBPF programs generate provenance graph elements in bi-
nary and write them to an eBPF ring buffer [3]. A user-space
daemon serializes those graph elements and outputs them
to disk (or to remote endpoints like Apache Kafka [1]) in a
machine readable format such as W3C PROV-DM [18].

We must associate states with kernel objects to guarantee
graph acyclicity and to implement graph compression algo-
rithms. For example, to guarantee acyclicity, we associate
with each object a version counter which is updated when
external information flows into an object and modifies its
state. After the update, a new vertex is added to the graph
and connected to the previous version of the object through
a version edge, as illustrated in Fig. 5 as dashed lines.
We also associate an “opaque” flag to the state of certain

kernel objects; opaque objects are not audited. This is partic-
ularly useful for ProvBPF’s daemon-related objects, because
capturing their provenance would result in an infinite feed-
back loop. CamFlow uses security blobs from the LSM
framework associated with each kernel object to maintain

Secure Namespaced Kernel Audit for Containers SoCC ’21, November 1–4, 2021, Seattle, WA, USA

its associated states. In ProvBPF, we leverages the local stor-
age mechanism (§ 3) for this purpose. Local storage can be
accessed by the ProvBPF daemon from userspace to set a
policy for each individual object (e.g., to set opacity).
Graph Reduction. eBPF-based provenance capture offers
exceptional flexibility in designing customized capture poli-
cies that fulfill different objectives. Customization typically
involves filtering, i.e., selecting kernel objects and system
events that are relevant to a specific analysis. For example,
Bates et al. [15] only record events related to objects associ-
ated with specific SELinux policies. ProvBPF allows for the
filter logic to be built-in during compilation, thus reducing
run-time overhead.
ProvBPF implements additional graph reduction tech-

niques other than filtering. It automatically merges consec-
utive events of the same type between two entities into a
single event and avoids object versioning as much as pos-
sible. Event merging reduces the number of edges between
two nodes without changing the semantics of the interac-
tions they represent. For example, when a process reads a file
piece-by-piece through a number of successive read system
calls, saBPF would create only one directed edge between
the process and the file to capture these read events, which
is sufficient to describe the information flow from the file to
the process due to read. On the other hand, avoiding object
versioning reduces the number of nodes, and ProvBPF does
so only when the semantics of an object have not changed.
These graph reduction techniques are completely agnostic
to specific downstream provenance analysis and can be eas-
ily configured at compilation time according to the needs
of a particular application. More importantly, unlike previ-
ous work [61] that performs graph compression as a costly
post-processing step (i.e., after recording the original graph),
ProvBPF employs those techniques during capture before
new edges are added to the graph.
Verifying Capture Correctness. It is challenging to verify
the correctness of a provenance capturemechanism [19]. At a
minimum, we must show that a provenance graph describing
system activity of a system call makes “intuitive” sense for a
human analyst inspecting the graph. We use both static and
dynamic analysis to verify that provenance graphs generated
by ProvBPF are reasonably correct.

Our static analysis generates a graphmotif for each system
call, which enables us to reason about the semantics of the
graph based on our understanding of the system call. We
follow the same strategy as described by Pasquier et al. [52].
To generate a system call graph motif, we first analyze the
kernel codebase to construct a call graph of a system call
and extract a subgraph, within the call graph, that contains
only LSM hooks [27]. We then analyze ProvBPF’s codebase
to generate a graph motif for each LSM hook and augment
the subgraph from the previous step by replacing each LSM

hook in the subgraph with the corresponding graph motif.
The resulting subgraph – now containing only graph motifs
of LSM hooks – is the graph motif of the system call that
summarizes what the provenance graph would look like
when the system call is executed.

In addition, we build test programs and follow the same
steps above to create program-level graph motifs. For each
program binary, we build a call graph which we then trans-
form into a syscall-only graph. We replace the syscalls in
the graph with the motifs we previously built. We run each
test program and verify by inspection that our (statically-
produced) motif matches the (dynamically-produced) prove-
nance graph generated by ProvBPF. We perform the same
steps in CamFlow [51] to verify that the graphs generated
by the two systems are equivalent.

4.2 An Intrusion Detection System for

Kubernetes

saBPF-based audit systems such as ProvBPF can be used as
an underlying framework for various security applications
in the cloud. We demonstrate this feasibility through a con-
crete use case of deploying Unicorn [29], a state-of-the-art
host-based intrusion detection system (IDS), in a Kubernetes
pod using ProvBPF as an upstream information provider.
Unicorn is an anomaly-based IDS that learns system behav-
ior from the provenance graph generated by benign system
activity. Once a model is learned from the graph, detection
is formulated as a graph comparison problem: if a running
system’s provenance graph deviates significantly from the
model, Unicorn considers the system to be under attack. In
the remainder of this section, we focus our discussion on how
ProvBPF facilitates deployment of an IDS in a containerized
environment in a novel and elegant manner; in-depth evalu-
ation of the performance of such an IDS is out of scope and
left for future work.
Design & Implementation. ProvBPF makes it easy to
run a provenance-based IDS at the pod level in Kubernetes,
which is challenging when provenance data is provided by a
reference-monitor-based audit system such as CamFlow [51].
For systems like CamFlow, provenance is always captured
system-wide; as a result, audit logs must be filtered to provide
as input to the IDS provenance data relevant to a pod only,
and filtering must be done on an individual pod basis. Unfor-
tunately, this extra filtering step inevitably adds delay and
complexity to the entire detection pipeline, thus reducing
runtime detection efficacy.

Instead, we use ProvBPF and Kubernetes’ sidecar design
pattern to attach the IDS to Kubernetes applications. A side-
car container is a container that runs alongside a main con-
tainer (i.e., the one that provides core functionality) in a pod.
In our design, for each pod, we include a sidecar container

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Lim et al.

that runs both ProvBPF and Unicorn. ProvBPF audits the
entire pod and generates a pod-level provenance graph; the
graph is then used as input to Unicorn. We note that other
detection systems such as StreamSpot [42] and log2vec [41]
could be used in a similar fashion. In a microservice environ-
ment, any misbehavior detected within a single pod can be
sent to a dedicated central service that performs alert cor-
relation [45] to detect, for example, early stages of a cyber
kill-chain.
Discussion. This deployment strategy, made possible by
ProvBPF, have a number of advantages. First, we do not
need to modify applications to deploy our IDS thanks to
the sidecar pattern. Second, we can easily deploy an IDS
model specific to an application running in a pod, without
taking into consideration extraneous activity of the rest of
the system. Third, ProvBPF produces provenance graph
elements that can be analyzed directly, without introducing
filtering delays in the detection pipeline. Fourth, deploying
ProvBPF imposes no cost on other pods running on the same
machine, since saBPF programs are only triggered within the
context of a single pod. This is in contrast to a classic system-
wide approach (e.g., Linux Auditd or CamFlow), which would
negatively affect performance on the entire machine.

4.3 Lightweight Ad-hoc Access Control

While saBPF was designed primarily to provide secure audit-
ing, it can also be used to implement simple access control
policy within the scope of a container.2 We implemented a
proof-of-concept to demonstrate saBPF’s ability to enforce
access control policy. Like in § 4.2, we consider a Kubernetes
environment and use the sidecar pattern to deploy access
control policy at the pod granularity.
Design & Implementation. Using saBPF, we can easily
achieve separation of concerns in Kubernetes, such that each
pod has its own set of security mechanisms and policies.
We deploy a sidecar alongside unmodified applications to
constrain their behavior. The sidecar runs a set of saBPF
programs implementing the desired policy and attach them
to the root cgroup of the pod. We associate security contexts
to kernel objects through local storage and define an eBPF
map to store constraints applicable to those contexts. When
an LSM hook is triggered, information is retrieved from the
map to determine whether or not an action is permitted.
Policy violation can be sent to userspace via an eBPF ring
buffer, which can then be logged or reported to the user
about the unexpected application behavior.

We take advantage of the eBPF framework to optimize the
sidecar at the time of its compilation based on the policy to
be enforced. For example, if the policy has no network access

2Policy conflict resolution across cgroup hierarchy is out of scope of this
paper. We refer interested readers to § 8.

rules, we do not build any rules enforcement program regard-
ing network access. In general, our access control mechanism
generates a minimum set of programs needed to enforce a
given policy, thus reducing complexity and improving per-
formance.
Policy Example. Taking inspiration from the Open Policy
Agent [12] and AppArmor [2], we create a simple policy lan-
guage. A policy is expressed in JSON and parsed to generate
a customized sidecar application that can be attached to a
pod.

1 {
2 " t a r g e t " : " / u s r / b in / foo " ,
3 " network " : { " d e f a u l t " : " deny " , " a l l ow_ eg r e s s " : [

4 0 4 , 8 0] } ,
4 " f i l e " : { " d e f a u l t " : " r " , " rw " : [" / tmp / ∗ "] , "mr " :

[" / l i b / ld − ∗ . so ∗ " ,
5 " / l i b / l i b ∗ . so ∗ "] }
6 }

Listing 2: A simple policy example.

Listing 2 shows an exemplar policy written in this lan-
guage. A /usr/bin/foo process is by default denied access
to the network unless it is an outgoing connection through
the http and https ports. Similarly, the process is denied
write or execute by default. However, it has read and write
access to the /tmp directory and is able to map system li-
braries. This policy is inherited by any child process forked
from the /usr/bin/foo process.

4.4 Discussion

We conclude this section by summarizing the advantages of
using saBPF, as repeatedly demonstrated by the three use
cases described above.
Performance. saBPF is the first reference-monitor-based
audit system that allows audit rule configuration at compila-
tion time, drastically minimizing run-time audit complexity
and improving overall performance. In stark contrast, other
audit mechanisms such as CamFlow must evaluate complex
audit rules at runtime to satisfy specific needs of different
downstream applications. For example, security tools such
as SIGL [31] typically analyze only a small subset of host
activity logs that an audit system like CamFlow provides. To
monitor an application in a Kubernetes pod, Unicorn requires
provenance data generated only by activity in the pod. In
both cases, filtering is inevitable but it can sometimes become
a performance bottleneck that is difficult to overcome. To
make matters worse, as we have discussed in § 5.1, run-time
evaluation can have adverse and cumulative performance
impact, making existing reference monitors undesirable to
be even considered in practical settings. Similarly, a given
application may only enforce access control constraints on

Secure Namespaced Kernel Audit for Containers SoCC ’21, November 1–4, 2021, Seattle, WA, USA

a subset of events. Through compilation-time policy evalu-
ation, saBPF can minimize run-time cost by running only
needed eBPF programs.
In practice, this means that given an equivalent policy, a

solution built using saBPF significantly outperforms current
solutions developed through the built-in LSM mechanism.
Maintainability and Adoption. Maintaining out of tree
LSMs requires significant effort and time investment. As
LSMs are built in the kernel, rigorous testing is essential to
avoid crashes or introducing unintended security vulnera-
bilities. This makes exploring new mechanisms difficult. For
similar reasons, it is rare for third parties to further develop
on a custom kernel given the high risk of instability and
vulnerability. We further discuss maintainability concerns
in § 7.
DecentralizedDeployment. Standard LSM-based solutions
are generally deployed system-wide and centralized, and
must bemanaged by the host. By contrast, each containerized
environment (assuming proper privileges) can deploy its
own LSM mechanisms using saBPF without affecting the
rest of the system. Each guest environment can run not only
different policies, but also a completely different mechanism.
Moreover, saBPF programs are only triggered within the
cgroup they are attached to, thus limiting data leakage across
containers (see § 7 for further discussion on security).

5 UNDERSTANDING POLICY OVERHEAD

The run-time performance overhead of any always-on audit
system is critical to its successful adoption. While the overall
performance is a function of a specific audit policy, which
varies across different needs and use cases, the run-time cost
of the underlying infrastructure can be reasonably analyzed,
which we present in this section. Our analysis focuses on
two main components of saBPF, LSM and eBPF; the cost of
running both together has not been widely studied, espe-
cially in the context of audit. We also compare our approach
with state-of-the-art reference-monitor-based auditing that
requires kernel modification.

5.1 LSM overhead

It is difficult to precisely measure LSM overhead [68]. In gen-
eral, there exist two sources of overhead when performing
audit (or other policy enforcement) through LSM: hooking
and execution. Hooking refers to the cost of invoking a call-
back function associated with a specific LSM hook, which
incurs roughly constant overhead. Execution refers to the
cost of running the callback function, which is dependent on
the specific audit (or other policy enforcement) mechanism
and can also vary by the (audit) policy itself.
It is sometimes mistakenly assumed that for a given sys-

tem call and a given policy on the system call, the overhead

System Call Security Hooks Min Hook Calls
open file_open+

inode_create
inode_permission*
inode_post_setxattr
inode_setattr

1 + 1 × path depth

read file_permission+ 1
write file_permission+ 1
execve bprm_check+

bprm_set_creds+
file_open+
inode_permission*
file_permission+

4 + 1 × path depth

Table 3: Summary of LSM hooks called on successful

system calls. Some hooks are only triggered in a par-

ticular system state or with specific syscall parameters

(e.g., when creating a new file on open). + indicates that

hooks are always called, and * means hooks are called

on every directory in a path.

introduced by a specific LSM module would be constant. In
reality, such an assumption is often an oversimplification.
Consider an open system call. A number of LSM hooks, such
as file_open and inode_permission, are triggered when
open is called. If a new file is created because of open, addi-
tional hooks such as inode_create and inode_setattr are
called when the new file’s underlying inode is being created
and its attributes set. Of particular interest in this example is
the inode_permission hook, which is called on each direc-
tory composing the path of the file to be opened, since open
must have the permission to search for the file to be opened.
To audit an open-file event, it is important to record all

the permission checks (including the ones on the directo-
ries) because it reveals file access patterns. For example, in a
security context, a failed inode_permission check could in-
dicate that a compromised application attempted to scan the
file system to access sensitive data. The overhead introduced
by such an audit mechanism on this particular event is a
function of path length. For example, assume that invoking
file_open and inode_permission and running their call-
back functions incur the same cost 𝐶 . The total overhead of
a file-open event on a path of length 𝑁 is𝐶 × (𝑁 + 1). Given
two audit policies, 𝑃𝐴 and 𝑃𝐵 , such that 𝐶𝐴 is one order of
magnitude higher than𝐶𝐵 , the total overhead incurred by 𝑃𝐴
is in fact two orders of magnitude higher than that by 𝑃𝐵 on
a path of length 10. The open system call is not the only one
affected by such behavior; other system calls, such as chmod,
symlink, mmap, stat, and execve have similar patterns.
Because this phenomenon can have a significant impact

on the overall system performance, we analyze the call graph

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Lim et al.

associated with each system call (see § 4.1) to understand
LSM hook invocation patterns. We show the results for a few
system calls in Table 3 (note that for readability, we do not
include hooks that are called when a system call fails/errs).

5.2 saBPF overhead

saBPF’s sources of overhead are fundamentally the same as
those of standard LSM security modules, i.e., hooking and
execution (§ 5.1). Therefore, if a standard security module
and saBPF implement the same policy, they incur roughly
the same total overhead, except that saBPF incurs some ad-
ditional cost to traverse the cgroup hierarchy and to invoke
the relevant eBPF programs (§ 3.1).
In practice, however, there exists significant differences

in policy overhead between a standard security module and
saBPF; saBPF offers time-saving convenience and flexibil-
ity that a standard security module is unable to provide.
To run a customized in-kernel LSM module, the Linux ker-
nel must be modified. This requires thorough testing before
the deployment of the custom kernel. It is common for av-
erage users to shy away from the mere idea of deploying
a kernel running heavily-customized code, especially one
where said customized code interacts with the OS security
framework. To mitigate those issues, standard modules are
typically designed to be general-purpose. For example, an
auditing module (e.g., CamFlow [51]) must be able to satisfy
different auditing needs without requiring users to compile
their own custom kernel. To that end, the module must eval-
uate at runtime an extensive audit policy to determine what
information it should log. As a concrete example, Bates et
al. [15] deploy policies to record events based on their secu-
rity context as provided by SELinux. For each object involved
in a given event, the audit mechanism needs to retrieve its
security ID and compare it with the specified policy. While
the policy is relatively simple, the cumulative effects (as dis-
cussed in § 5.1) on the policy have a significant impact on
performance.
On the other hand, saBPF-based solutions take into ac-

count audit policy at compilation time, which significantly
reduces run-time complexity and thus improves performance.
Moreover, since saBPF allows users to attach programs based
on cgroups, there is virtually no overhead imposed on appli-
cations running outside of the targeted cgroup. This means,
for example, that if a Kubernetes pod deploys a complex audit
mechanism, the other pods on the system remain unaffected.

6 PERFORMANCE EVALUATION

In this section, we evaluate saBPF performance on a bare
metal machine with 16GiB of RAM and an Intel i7 CPU.
In § 6.1, we analyze the cost of hook invocation on saBPF.
Next, in § 6.2, we explore the performance gain from using

socket bind listen accept 0

5

10

15

20

Ti
m
e
(𝜇
s)

LSM LSM-BPF saBPF

Figure 7: Overhead of the LSM, LSM-BPF, and saBPF

invocation mechanisms.

saBPF rather than a state-of-the-art monitoring system that
modifies the Linux kernel, when performing exactly the same
functionality. Appendix A has more details on reproducing
the results reported in this section.

6.1 Overhead of Namespacing

We compare the overhead associated with different mecha-
nisms responsible for calling LSM hooks. We are interested
in the following three strategies: 1) the native LSM mecha-
nism with built-in functions (LSM); 2) LSM-BPF that attaches
an eBPF function to an LSM hook (LSM-BPF); and 3) saBPF
that attaches eBPF programs at the intersection of a cgroup
and an LSM hook (saBPF). We use ftrace [9] to perform the
measurement. To measure exclusively the cost of each call-
ing mechanism, the function or program that is attached to
each hook performs no operations and simply returns. We
capture the overhead of four common functions associated
with a UNIX server: socket, bind, listen, and accept. The
overhead is associated with the following four LSM hooks:
security_socket_[create/bind/listen/accept]. The re-
sults are shown in Fig. 7. We report overhead relative to a
single baseline and focus on order-of-magnitude comparison,
because ftrace (or any similar kernel instrumentation tool)
can introduce additional overhead [9]. We use the overhead
of native LSM on the socket_create hook to normalize
experimental results.
We see in Fig. 7 that the invocation overhead is nearly

constant and independent of the system call. It is roughly
10 and 15 times more costly with LSM-BPF and saBPF than
with native LSM, respectively. The built-in LSM simply finds
the address of the LSM function in a hook table and calls
the function. The extra cost of LSM-BPF is related to the

Secure Namespaced Kernel Audit for Containers SoCC ’21, November 1–4, 2021, Seattle, WA, USA

Algorithm 1: Execute an eBPF program (simplified).
1 // disallow task core migration and preemption
2 migrate_disable();
3 rcu_read_lock();
4 rc = run_bpf_programs();
5 rcu_read_unlock();
6 // allow task core migration and preemption
7 migrate_enable();
8 return rc;

Algorithm 2: Execute an saBPF program (simpli-
fied).

1 hierarchy = get_cgroup_hierarchy(current_task,
hook_reference);

2 // disallow task core migration and preemption
3 migrate_disable();
4 rcu_read_lock();
5 foreach cgroup in hierarchy do

6 rc = run_bpf_programs();
7 if rc then
8 return rc;
9 rcu_read_unlock();

10 // allow task core migration and preemption
11 migrate_enable();
12 return rc;

cost of invoking an eBPF program. We show the simplified
logic to execute an eBPF program in Alg. 1. While the over-
head of executing the eBPF program itself is relatively low
(close to executing a native function), handling read-copy-
update (RCU) [14] synchronization primitives and manipu-
lating scheduler migration and preemption flags accounts
for the majority of the overhead.
As shown in Alg. 2, saBPF follows a similar logic, ex-

cept that it incurs additional overhead when retrieving and
traversing the cgroup hierarchy.

However, we emphasize that these relative overheadsmust
be considered with respect to the cost of policy evaluation.
As a point of comparison, SELinux’s policy evaluation cost
of the socket_create hook is 2, 000 times larger than the
invocation cost of native LSM. To better understand the ac-
tual cost of running saBPF and to contextualize its overhead,
we perform both micro- and macro-benchmarks in the next
section.

6.2 Evaluating ProvBPF

To contextualize saBPF’s performance with a realistic work-
load, we perform an evaluation of ProvBPF through micro-

Test Type vanilla CamFlow Overhead ProvBPF Overhead
Process tests (in 𝜇𝑠 , the smaller the better)

NULL call 0.30 0.32 0% 0.29 0%
NULL I/O 0.39 0.75 92% 0.54 38%
stat 1.04 3.77 263% 1.40 35%
fstat 0.52 1.40 169% 0.66 28%
open/close file 1.80 5.89 227% 2.62 46%
read file 0.40 0.73 84% 0.56 42%
write file 0.36 0.70 92% 0.53 53%
fork process 295.55 344.15 13% 317.78 8%

File and memory latency (in 𝜇𝑠 , the smaller the better)
file create (0k) 10.31 21.20 106% 13.10 27%
file delete (0k) 11.25 23.35 108% 12.80 14%
file create (10k) 16.55 40.75 146% 20.65 25%
file delete (10k) 13.45 30.20 125% 15.55 16%
pipe latency 6.06 10.45 72% 6.55 8%
AF_UNIX latency 6.60 16.43 149% 9.72 47%

Table 4: lmbench results.

(§ 6.2.1) and macro-benchmarks (§ 6.2.2). We demonstrate
that ProvBPF outperforms the state-of-the-art whole-system
provenance solution CamFlow [51] and incurs minimal per-
formance overhead.

We choose standard benchmarks such as lmbench, so that
saBPF can be meaningfully compared with prior and fu-
ture work. We run each benchmark on three different kernel
configurations. The vanilla configuration runs on the un-
modified mainline Linux kernel v5.11.2, which serves as our
baseline. The CamFlow configuration uses the same kernel
but additionally instrumented with CamFlow kernel patches
(v0.7.2) [4]. Finally, the ProvBPF workload corresponds to
the same Linux kernel but running with our eBPF-based
provenance capture mechanism ProvBPF. We also ensure
that ProvBPF’s and CamFlow’s configurations are equiva-
lent.

6.2.1 Microbenchmark. We use lmbench [43] to measure
ProvBPF’s performance overhead on raw system calls, as
reported in Table 4. We show only a relevant subset of per-
formance metrics due to space constraints, but the complete
results are available online (see Appendix A).

The overhead of ProvBPF, when compared to the vanilla
kernel, is relatively low. In addition to the overhead intro-
duced by the invocationmechanism, ProvBPF also incurs the
cost of building the provenance graph elements and sending
them to the user-space program. It outperforms CamFlow
as it is significantly streamlined. Indeed, CamFlow uses a
complex set of capture policies to allow users to tailor data
capture to their specific needs [51]. Evaluating the policy
at runtime can be relatively costly, especially since the ef-
fects can be cumulative (§ 5). In the case of ProvBPF, policy
evaluation is performed at compilation time, so that the com-
piled code only captures the desired events, thus significantly
reducing overhead given equivalent policies.

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Lim et al.

Test Type vanilla CamFlow Overhead ProvBPF Overhead
Execution time (in seconds, the smaller the better)

unpack 6.52 7.70 18% 6.59 1%
build 194.26 232.01 19% 203.70 5%
4kB to 1MB file, 10 subdirectories,4k5 simultaneous transactions, 1M5 transactions
postmark 79.50 113.00 42% 92.50 16%

Table 5: Macrobenchmark results.

Test Type vanilla CamFlow Overhead ProvBPF Overhead
Request/Operation per second (the higher the better)

apache httpd 14645 10682 27% 13487 8%
redis (LPOP) 2105221 1780868 15% 1894961 10%
redis (SADD) 2073489 1721367 17% 1854162 11%
redis (LPUSH) 1630446 1401497 14% 1510000 7%
redis (GET) 2360694 1928276 18% 2102901 11%
redis (SET) 1873359 1569507 16% 1690189 10%
memcache (ADD) 44122 30444 31% 41362 6%
memcache (GET) 67895 41363 39% 62167 8%
memcache (SET) 44460 30346 32% 41355 7%
memcache (APPEND) 46730 31157 33% 43215 8%
memcache (DELETE) 67761 40735 40% 61755 9%
php 690725 613296 11% 709476 0%

Execution time (in ms, the lower the better)
pybench 1246 1298 4% 1196 0%

Table 6: Extended macrobenchmark results.

6.2.2 Macrobenchmark. Wepresent two sets of macrobench-
marks. The first set, as shown in Table 5, measures the
performance impact on a single machine when unpacking
and building the kernel and running the Postmark bench-
mark [39]. These are the common benchmarks used in prior
provenance literature ever sinceMuniswamy-Reddy et al. [48]
introduced the concept of system provenance. Table 6 shows
the results of the second set of benchmarks focusing on a
set of applications typically used to build web applications.
These benchmarks are not intended to cover every possible
scenario, but rather to provide meaningful points of com-
parison. We rely on the Phoronix Test Suite [13] to perform
these benchmarks. Details on benchmark parameters and
settings are available in our repository, see Appendix A.
From the first set of benchmarks (Table 5), we see that

ProvBPF introduces between 1% and 16% overhead. Unpack
and build workloads are computation heavy, and most of the
execution time is spent in userspace. On the other hand, post-
mark spends a more significant portion of its execution time
in system call code. As ProvBPF only adds overhead when
system calls are executed, it unsurprisingly performs worse
in the Postmark benchmark. In the second set of benchmarks
(Table 6), we evaluate the impact of ProvBPF on applica-
tions that are often deployed through containers. ProvBPF’s
overhead is between 0% and 11%. In all scenarios, ProvBPF
outperforms CamFlow.
We also note that ProvBPF results are in the same order

of magnitude as similar whole-system provenance capture

Date Release Long Term Support Changes
April 2021 5.12 No 4
February 2021 5.11 No 3
December 2020 5.10 Yes 2
October 2020 5.9 No 0
August 2020 5.8 No 4
May 2020 5.7 No 0
March 2020 5.6 No 0
January 2020 5.5 No 5
November 2019 5.4 Yes 1

Table 7: Changes made to the LSM ABI in terms of

the number of interface function modified (including

name changes, parameter modifications, and additions

and deletions) since the latest release. We note that

there is a total of 236 LSM hooks as of release 5.12.

solutions such as Hi-Fi [54] and LPM [17]. We are not able
to provide direct comparison with these solutions since they
were implemented for extremely outdated kernels (release
2.6.32 from 2009 for LPM [16] and release 3.2.0 from 2011
for Hi-Fi [53]); internal kernel changes make it practically
impossible for us to port them to a modern kernel release.

7 DISCUSSION

Security. We are aware of a number of security issues with
eBPF (e.g., CVE [6] and CVE [7]). In many known attack sce-
narios related to eBPF, an attacker exploits the eBPF verifier
to make illegal modifications of kernel data structures, e.g.,
to perform privilege escalation [6]. One clear solution is to
improve the verification of eBPF programs [28, 50]. While
this is an important problem worthy of investigation, it is
orthogonal to saBPF and therefore out of scope for this paper.
We note that, to the best of our knowledge, saBPF does not
introduce new attack vectors and that any improvement to
eBPF security will benefit saBPF.
Layering. In this work, we focus on capturing kernel-level
audit data that describes low-level system interactions. How-
ever, to fully understand application behavior, it is often
useful to analyze audit information from multiple sources,
preferably from different layers of abstraction. For exam-
ple, layering both low-level system traces and higher-level
application traces can often facilitate attack investigation
by enabling forensic experts to identify, in an iterative fash-
ion, an attack point of entry [40]. The application of such
techniques is beyond the scope of this paper, but saBPF and
any application built atop can be seamlessly integrated with
existing layering techniques.
Maintainability. One of the key advantages in building au-
dit tools through eBPF and by extension saBPF is that they
can be heavily customized to fulfill the needs of the user.

Secure Namespaced Kernel Audit for Containers SoCC ’21, November 1–4, 2021, Seattle, WA, USA

As we previously pointed out, maintaining bespoke built-in
audit tools requires the developers to, at a minimum, 1) main-
tain a custom kernel, 2) prepare a customOS distribution, and
3) perform extensive testing before actual deployment. This
burden is greatly alleviated using our proposed solution. The
audit mechanism is neatly separated from the OS and can be
built and tested independently. Furthermore, with BTF and
CO-RE[49], any solution built with saBPF does not need to
be built against a specific version of the kernel; it only needs
to be rebuilt (and updated) when the kernel’s internal LSM
ABI changes, which is rare (Table 7). We note that a number
of popular distributions ship only Long Term Support kernel
versions, which further simplifies maintenance.

8 RELATEDWORK

saBPF is designed mostly for monitoring containers in the
cloud and uses two major technologies, eBPF and LSM. We
discuss related work in these areas.
eBPF-based Security. In system security, one of the well-
known eBPF-enabled applications is seccomp-bpf, which
filters system calls available for user-space applications to
reduce kernel attack surface [21]. seccomp filters use BPF
programs to decide, based on the system call number and
arguments, whether a given call is allowed or not. A more
recent application of eBPF is LBM [62], which protects the
Linux kernel from malicious peripherals such as USB, Blue-
tooth, and NFC. LBM places interposition hooks, through the
implementation of new eBPF program types, right beneath
a peripheral’s protocol stack and above the peripheral’s con-
troller driver, so that it can guarantee that eBPF programs
can filter all inputs from the device and all outputs from the
host. LBM introduces a new filter language for peripherals
to enforce programmable security policies.

LSM-BPF is still a nascent eBPF extension, emerging from
Kernel Runtime Security Instrumentation (KRSI) [57]. KRSI
enables privileged users to dynamically update MAC and
audit policies based on the state of the computing environ-
ment. bpfbox [24] uses LSM-BPF to create process sandboxes
through a flexible policy language. BPFContain [23] uses
LSM-BPF to enforce system-wide policy to control container
IPC, and file and network access. They both leverage eBPF
because it is easier to maintain and further develop eBPF
programs than to use out-of-tree LSMs for their particular
needs. saBPF is orthogonal to these systems and focuses
on leveraging eBPF at the intersection of cgroup and LSM
hooks, mainly but not exclusively for secure auditing.
Monitoring Containers. There are a number of widely
available solutions, such as Cilium [5], Grafana [10], and
Nagios [11], that monitor containers, but they focus primar-
ily on performance and/or network traffic monitoring. We
design saBPF not to compete with these solutions, but to

allow their functionality to be extended to secure auditing.
Indeed, while these frameworks provide a wealth of infor-
mation, their capture methodology does not provide strong
enough guarantees in the presence of an attacker. Further-
more, saBPF enables the implementation of decentralized
solutions that need not be managed by the host platform.
LSM. The LSM framework [46] was introduced nearly two
decades ago to Linux for Mandatory Access Control (MAC).
Two of the most popular applications of LSM are AppAr-
mor [2] and SELinux [58]. Over the years, the LSM frame-
work has seen its usage extended to implementing mecha-
nisms such as the Linux Integrity Measurement Architec-
ture [55], which enables hardware-based integrity attesta-
tion, and loadpin [20], whichwas developed to restrict the ori-
gin of kernel-loaded code to read-only devices in ChromeOS.
LSM has also been used to implement secure auditing as
previously mentioned [17, 51, 54]. These work is orthogonal
to saBPF; instead, saBPF is closely related to prior work that
attempted to allow namespacing and stacking of LSM mod-
ules [38, 60]. They focused on enabling containers to define
their own security policy within a system-wide MAC scheme.
For example, Sun et al. [60] make AppArmor namespace-
aware so that each individual container can have its own
policy to be enforced by the host. This is a non-trivial task
involving conflict resolution alongside the security names-
pace hierarchy. saBPF expends on such ideas by allowing
containers to provide not only their own policy, but also
their own totally separate mechanisms.

9 CONCLUSION

We present saBPF, a lightweight system-level auditing frame-
work for container-based cloud environments. saBPF is built
upon the widely-used eBPF framework. It is simple to use
and allows individual containers to deploy – in a decentral-
ized manner – secure auditing tools. These tools in turn
enable users to implement a wide range of security solutions
on container-oriented cloud platforms, such as intrusion de-
tection systems for individual containers. Using saBPF, we
were able to re-implement a state-of-the-art audit system that
provides exactly the same functionality while significantly
improving performance. We open-source saBPF, welcoming
the community to develop and deploy toolsets that leverage
our system, in hopes of further discovering the potentials of
saBPF.

A AVAILABILITY

Our implementation (§ 3) and instructions to reproduce the
results presented (§ 6) are available at https://github.com/
saBPF-project.

https://github.com/saBPF-project
https://github.com/saBPF-project

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Lim et al.

REFERENCES

[1] [n.d.]. Apche Kafka. online (accessed 29th September 2021). https:
//kafka.apache.org/.

[2] [n.d.]. AppArmor. online (accessed 29th September 2021). https:
//apparmor.net/.

[3] [n.d.]. BPF ring buffer. online (accessed 29th September 2021). https:
//www.kernel.org/doc/html/latest/bpf/ringbuf .html.

[4] [n.d.]. CamFlow. online (accessed 29th September 2021). https:
//camflow.org/.

[5] [n.d.]. Cilium. online (accessed 29th September 2021). https://
cilium.io/.

[6] [n.d.]. CVE-2020-8835. online (accessed 29th September 2021). https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8835.

[7] [n.d.]. CVE-2021-29154. online (accessed 29th September 2021). https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29154.

[8] [n.d.]. eBPF. online (accessed 29th September 2021). https://ebpf .io/.
[9] [n.d.]. ftrace documentation. online (accessed 29th September 2021).

https://www.kernel.org/doc/html/v4.17/trace/ftrace.html.
[10] [n.d.]. Grafana. online (accessed 29th September 2021). https://

grafana.com/.
[11] [n.d.]. Nagios. online (accessed 29th September 2021). https://

www.nagios.org/.
[12] [n.d.]. Open Policy Agent. online (accessed 29th September 2021).

https://www.openpolicyagent.org/.
[13] [n.d.]. Phoronix test suite. online (accessed 29th September 2021).

https://www.phoronix-test-suite.com/.
[14] 2021. RCU. online (accessed 29th September 2021). https://

www.kernel.org/doc/Documentation/RCU/whatisRCU.txt.
[15] Adam Bates, Kevin RB Butler, and Thomas Moyer. 2015. Take only

what you need: leveraging mandatory access control policy to reduce
provenance storage costs. InWorkshop on the Theory and Practice of
Provenance (TaPP 15). USENIX.

[16] Adam Bates, Dave Jing Tian, Kevin RB Butler, and Thomas Moyer.
[n.d.]. LPM source code. online (accessed 29th September 2021).
https://bitbucket.org/uf_sensei/redhat-linux-provenance-release/.

[17] Adam Bates, Dave Jing Tian, Kevin RB Butler, and Thomas Moyer.
2015. Trustworthy whole-system provenance for the linux kernel. In
Security Symposium. USENIX, 319–334.

[18] Khalid Belhajjame, Reza B’Far, James Cheney, Sam Coppens, Stephen
Cresswell, Yolanda Gil, Paul Groth, Graham Klyne, Timothy Lebo, Jim
McCusker, Simon Miles, James Myers, and Satya Sahoo. 2013. PROV-
DM: The PROV Data Model. Technical Report. W3C.

[19] Sheung Chi Chan, James Cheney, Pramod Bhatotia, Thomas Pasquier,
Ashish Gehani, Hassaan Irshad, Lucian Carata, and Margo Seltzer.
2019. ProvMark: a provenance expressiveness benchmarking system.
In International Middleware Conference. ACM/IFIP, 268–279.

[20] Jonathan Corbet. 2016. LoadPin. online (accessed 29th September 2021).
https://lwn.net/Articles/682302/.

[21] Jake Edge. 2015. A seccomp overview. Linux Weekly News (2015).
[22] Antony Edwards, Trent Jaeger, and Xiaolan Zhang. 2002. Runtime

verification of authorization hook placement for the Linux security
modules framework. In Conference on Computer and Communications
Security (CCS’02). ACM, 225–234.

[23] William Findlay, David Barrera, and Anil Somayaji. 2021. BPFContain:
Fixing the Soft Underbelly of Container Security. arXiv (2021).

[24] William Findlay, Anil Somayaji, and David Barrera. 2020. bpfbox:
Simple Precise Process Confinement with eBPF. In Cloud Computing
Security Workshop (CCSW). ACM, 91–103.

[25] Xing Gao, Zhongshu Gu, Mehmet Kayaalp, Dimitrios Pendarakis, and
Haining Wang. 2017. ContainerLeaks: Emerging security threats of
information leakages in container clouds. In International Conference

on Dependable Systems and Networks (DSN’17). IEEE/IFIP, 237–248.
[26] Ashish Gehani and Dawood Tariq. 2012. SPADE: Support for Prove-

nance Auditing in Distributed Environments. In International Middle-
ware Conference. Springer-Verlag, 101–120.

[27] Laurent Georget, Mathieu Jaume, Frédéric Tronel, Guillaume Piolle,
and Valérie Viet Triem Tong. 2017. Verifying the reliability of operating
system-level information flow control systems in linux. In International
FME Workshop on Formal Methods in Software Engineering (FormaliSE).
IEEE, 10–16.

[28] Elazar Gershuni, Nadav Amit, Arie Gurfinkel, Nina Narodytska,
Jorge A Navas, Noam Rinetzky, Leonid Ryzhyk, and Mooly Sagiv. 2019.
Simple and precise static analysis of untrusted linux kernel extensions.
In Conference on Programming Language Design and Implementation
(PLDI’19). ACM, 1069–1084.

[29] Xueyuan Han, Thomas Pasquier, Adam Bates, James Mickens, and
Margo Seltzer. 2020. UNICORN: Runtime Provenance-based Detector
for Advanced Persistent Threats. In Network and Distributed System
Security Symposium (NDSS’20). Internet Society.

[30] Xueyuan Han, Thomas Pasquier, Tanvi Ranjan, Mark Goldstein, and
Margo Seltzer. 2017. Frappuccino: Fault-detection through runtime
analysis of provenance. InWorkshop on Hot Topics in Cloud Computing
(HotCloud’17). USENIX.

[31] Xueyuan Han, Xiao Yu, Thomas Pasquier, Ding Li, Junghwan Rhee,
James Mickens, Margo Seltzer, and Haifeng Chen. 2021. SIGL: Secur-
ing Software Installations Through Deep Graph Learning. In Security
Symposium. USENIX.

[32] Wajih Ul Hassan, Lemay Aguse, Nuraini Aguse, Adam Bates, and
Thomas Moyer. 2018. Towards scalable cluster auditing through gram-
matical inference over provenance graphs. In Network and Distributed
Systems Security Symposium (NDSS’18).

[33] Wajih Ul Hassan, Adam Bates, and Daniel Marino. 2020. Tactical
Provenance Analysis for Endpoint Detection and Response Systems.
In Symposium on Security and Privacy (S&P’20). IEEE.

[34] Wajih Ul Hassan, Mohammad Ali Noureddine, Pubali Datta, and Adam
Bates. 2020. OmegaLog: High-fidelity attack investigation via trans-
parent multi-layer log analysis. In Network and Distributed System
Security Symposium. Internet Society.

[35] Tejun Heo. [n.d.]. Control Group v2. online (accessed 29th Sep-
tember 2021). https://www.kernel.org/doc/html/latest/admin-guide/
cgroup-v2.html.

[36] Trent Jaeger, Antony Edwards, and Xiaolan Zhang. 2004. Consistency
analysis of authorization hook placement in the Linux security mod-
ules framework. ACM Transactions on Information and System Security
(TISSEC) 7, 2 (2004), 175–205.

[37] Hai Jin, Zhi Li, Deqing Zou, and Bin Yuan. 2019. Dseom: A framework
for dynamic security evaluation and optimization of MTD in container-
based cloud. IEEE Transactions on Dependable and Secure Computing
(2019).

[38] John Johansen and Casey Schaufler. 2017. Namespacing and Stacking
the LSM. In Linux Plumbers Conference.

[39] Jeffrey Katcher. 1997. Postmark: A new file system benchmark. Technical
Report. Technical Report TR3022, Network Appliance.

[40] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2013. High Ac-
curacy Attack Provenance via Binary-based Execution Partition. In
Network and Distributed System Security Symposium (NDSS’13). Inter-
net Society.

[41] Fucheng Liu, Yu Wen, Dongxue Zhang, Xihe Jiang, Xinyu Xing, and
Dan Meng. 2019. Log2vec: a heterogeneous graph embedding based
approach for detecting cyber threats within enterprise. In Conference
on Computer and Communications Security (CCS’19). ACM, 1777–1794.

[42] Emaad Manzoor, Sadegh M Milajerdi, and Leman Akoglu. 2016. Fast
memory-efficient anomaly detection in streaming heterogeneous

https://kafka.apache.org/
https://kafka.apache.org/
https://apparmor.net/
https://apparmor.net/
https://www.kernel.org/doc/html/latest/bpf/ringbuf.html
https://www.kernel.org/doc/html/latest/bpf/ringbuf.html
https://camflow.org/
https://camflow.org/
https://cilium.io/
https://cilium.io/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8835
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8835
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29154
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29154
https://ebpf.io/
https://www.kernel.org/doc/html/v4.17/trace/ftrace.html
https://grafana.com/
https://grafana.com/
https://www.nagios.org/
https://www.nagios.org/
https://www.openpolicyagent.org/
https://www.phoronix-test-suite.com/
https://www.kernel.org/doc/Documentation/RCU/whatisRCU.txt
https://www.kernel.org/doc/Documentation/RCU/whatisRCU.txt
https://bitbucket.org/uf_sensei/redhat-linux-provenance-release/
https://lwn.net/Articles/682302/
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html

Secure Namespaced Kernel Audit for Containers SoCC ’21, November 1–4, 2021, Seattle, WA, USA

graphs. In International Conference on Knowledge Discovery and Data
Mining (KDD’16). ACM, 1035–1044.

[43] Larry W McVoy, Carl Staelin, et al. 1996. lmbench: Portable Tools
for Performance Analysis. In Annual Technical Conference (ATC’96).
USENIX, 279–294.

[44] Sadegh M. Milajerdi, Birhanu Eshete, Rigel Gjomemo, and V. N.
Venkatakrishnan. 2019. Poirot: Aligning Attack Behavior with Kernel
Audit Records for Cyber Threat Hunting. In Conference on Computer
and Communications Security (CCS’19). ACM.

[45] Sadegh M Milajerdi, Rigel Gjomemo, Birhanu Eshete, Ramachandran
Sekar, and VN Venkatakrishnan. 2019. Holmes: real-time apt detection
through correlation of suspicious information flows. In Symposium on
Security and Privacy (S&P’19). IEEE, 1137–1152.

[46] James Morris, Stephen Smalley, and Greg Kroah-Hartman. 2002. Linux
Security Modules: General Security Support for the Linux Kernel. In
Security Symposium. USENIX.

[47] Thomas Moyer and Vijay Gadepally. 2016. High-throughput ingest of
data provenance records into Accumulo. In High Performance Extreme
Computing Conference (HPEC’16). IEEE, 1–6.

[48] Kiran-Kumar Muniswamy-Reddy, David A Holland, Uri Braun, and
Margo Seltzer. 2006. Provenance-aware Storage Systems. In Annual
Technical Conference (ATC’06). USENIX, 43–56.

[49] Andrii Nakryiko. [n.d.]. BPF Portability and CO-RE. online (accessed
29th September 2021). https://facebookmicrosites.github.io/bpf/blog/
2020/02/19/bpf-portability-and-co-re.html.

[50] Luke Nelson, Jacob Van Geffen, Emina Torlak, and Xi Wang. 2020.
Specification and verification in the field: Applying formal methods
to BPF just-in-time compilers in the Linux kernel. In Symposium on
Operating Systems Design and Implementation (OSDI’20). USENIX, 41–
61.

[51] Thomas Pasquier, Xueyuan Han, Mark Goldstein, Thomas Moyer,
David Eyers, Margo Seltzer, and Jean Bacon. 2017. Practical Whole-
System Provenance Capture. In Symposium on Cloud Computing
(SoCC’17). ACM.

[52] Thomas Pasquier, Xueyuan Han, Thomas Moyer, Adam Bates, Olivier
Hermant, David Eyers, Jean Bacon, and Margo Seltzer. 2018. Runtime
Analysis of Whole-System Provenance. In Conference on Computer and
Communications Security (CCS’18). ACM.

[53] Devin J Pohly, Stephen McLaughlin, Patrick McDaniel, and Kevin
Butler. [n.d.]. Hi-Fi source code. online (accessed 29th September 2021).
https://github.com/djpohly/linux.

[54] Devin J Pohly, Stephen McLaughlin, Patrick McDaniel, and Kevin
Butler. 2012. Hi-Fi: Collecting High-fidelity Whole-system Provenance.
InAnnual Computer Security Applications Conference (ACSAC’12). ACM,
259–268.

[55] Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert Van Doorn.
2004. Design and Implementation of a TCG-based Integrity Measure-
ment Architecture. In Security Symposium, Vol. 13. USENIX, 223–238.

[56] Z Cliffe Schreuders, Tanya McGill, and Christian Payne. 2011. Em-
powering end users to confine their own applications: The results of a
usability study comparing SELinux, AppArmor, and FBAC-LSM. ACM
Transactions on Information and System Security (TISSEC) 14, 2 (2011),
1–28.

[57] KP Singh. 2019. Kernel Runtime Security Instrumentation. online
(accessed 29th September 2021). https://lwn.net/Articles/798918/.

[58] Stephen Smalley, Chris Vance, and Wayne Salamon. 2001. Implement-
ing SELinux as a Linux security module. NAI Labs Report 1, 43 (2001),
139.

[59] Stephen Soltesz, Herbert Pötzl, Marc E Fiuczynski, Andy Bavier, and
Larry Peterson. 2007. Container-based operating system virtualization:
a scalable, high-performance alternative to hypervisors. In European
Conference on Computer Systems (EuroSys’07). ACM, 275–287.

[60] Yuqiong Sun, David Safford, Mimi Zohar, Dimitrios Pendarakis, Zhong-
shu Gu, and Trent Jaeger. 2018. Security namespace: making linux
security frameworks available to containers. In Security Symposium.
USENIX.

[61] Yutao Tang, Ding Li, Zhichun Li, Mu Zhang, Kangkook Jee, Xusheng
Xiao, Zhenyu Wu, Junghwan Rhee, Fengyuan Xu, and Qun Li. 2018.
NodeMerge: Template Based Efficient Data Reduction For Big-Data
Causality Analysis. In Conference on Computer and Communications
Security (CCS’18). ACM, 1324–1337.

[62] Dave Jing Tian, Grant Hernandez, Joseph I Choi, Vanessa Frost, Peter C
Johnson, and Kevin RB Butler. 2019. LBM: a security framework for
peripherals within the linux kernel. In Symposium on Security and
Privacy (S&P’19). IEEE, 967–984.

[63] Kennedy A Torkura, Muhammad IH Sukmana, and Christoph Meinel.
2017. Integrating continuous security assessments in microservices
and cloud native applications. In International Conference on Utility
and Cloud Computing (UCC’17). IEEE/ACM, 171–180.

[64] Veritis. 2019. State of Containers Report 2019: ‘Security’ Re-
mains A Challenge! online (accessed 29th September 2021).
https://www.veritis.com/blog/state-of-containers-report-2019-
security-remains-a-challenge/.

[65] Qi Wang, Wajih Ul Hassan, Ding Li, Kangkook Jee, Xiao Yu, Kexuan
Zou, Junghwan Rhee, Zhengzhang Chen, Wei Cheng, Carl A. Gunter,
and Haifeng Chen. 2020. You Are What You Do: Hunting Stealthy
Malware via Data Provenance Analysis. In Network and Distributed
System Security (NDSS’20). Internet Society.

[66] Robert NM Watson. 2007. Exploiting Concurrency Vulnerabilities in
System Call Wrappers. Workshop on Offensive Technologies (WOOT’07)
7 (2007), 1–8.

[67] Robert NM Watson. 2013. A decade of OS access-control extensibility.
ACM Queue 11, 1 (2013), 20–41.

[68] Wenhui Zhang, Peng Liu, and Trent Jaeger. 2021. Analyzing the Over-
head of File Protection by Linux Security Modules. In Asia Conference
on Computer and Communications Security (AsiaCCS’21). ACM, 393–
406.

https://facebookmicrosites.github.io/bpf/blog/2020/02/19/bpf-portability-and-co-re.html
https://facebookmicrosites.github.io/bpf/blog/2020/02/19/bpf-portability-and-co-re.html
https://github.com/djpohly/linux
https://lwn.net/Articles/798918/
https://www.veritis.com/blog/state-of-containers-report-2019-security-remains-a-challenge/
https://www.veritis.com/blog/state-of-containers-report-2019-security-remains-a-challenge/

	Abstract
	1 Introduction
	2 Background
	2.1 Extended Berkeley Packet Filter
	2.2 Linux Security Modules
	2.3 Namespaces in Linux

	3 saBPF: Extending the eBPF Framework
	3.1 Namespacing LSM-BPF
	3.2 Local Storages
	3.3 Extension of eBPF interface

	4 Use Cases
	4.1 Whole-system Provenance Capture
	4.2 An Intrusion Detection System for Kubernetes
	4.3 Lightweight Ad-hoc Access Control
	4.4 Discussion

	5 Understanding Policy Overhead
	5.1 LSM overhead
	5.2 saBPF overhead

	6 Performance Evaluation
	6.1 Overhead of Namespacing
	6.2 Evaluating ProvBPF

	7 Discussion
	8 Related Work
	9 Conclusion
	A Availability
	References

